Estimated Economic Impacts on New Hampshire of EPA 2010 Ozone Proposal

Executive Summary

Introduction and Objective
- EPA issued a reconsideration in January 2010 that would lower the primary (8-hour) ambient ozone standard to a level between 60 and 70 parts per billion (ppb).
- This study evaluates potential 2020 attainment costs and economic impacts in New Hampshire from an ozone standard of 60 ppb relative to a standard of 84 ppb (EPA baseline).

Baseline 2020 Nonattainment Status and Consequences for New Hampshire Counties
- EPA projects three New Hampshire counties would exceed 60 ppb in 2020 under baseline conditions.
- Nonattainment for Manchester and other urban areas in New Hampshire would mean restrictions on new facilities and possible loss of federal highway/transit funding.
- Complications with Prevention of Significant Deterioration (PSD) and New Source Review (NSR) pre-construction permits could lead to project delays and/or deferrals.

New Hampshire Emission Reductions Required to Achieve 60 ppb Ozone Standard in 2020
- To meet a 60 ppb standard, EPA projects 2020 NOx emissions must be 31,000 tons, a reduction of 2,400 tons (7 percent) from the 2020 baseline. NERA relied on this estimate of required reduction for its own analysis.
- EPA estimates that “known” controls would reduce New Hampshire NOx emissions by the required 2,400 tons.

Study Findings: New Hampshire Controls and Attainment Costs
- Estimated attainment costs for New Hampshire based on EPA’s “known” controls are $8.0 million. (All dollars in this report are in 2010 dollars.)

Study Findings: New Hampshire Economic Impacts
- The state-of-the-art and widely used REMI Policy Insight model was used to estimate net New Hampshire economic impacts (taking into account attainment costs in other states).
- A 60 ppb standard in 2020 would, for New Hampshire: reduce jobs by 19,000, a 2.4 percent decrease relative to baseline; reduce gross regional product by $1.7 billion; reduce disposable income by $1.2 billion; and reduce state tax revenue by $0.1 billion.

<table>
<thead>
<tr>
<th>Units</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>-2.4%</td>
<td>-2.1%</td>
<td>-1.6%</td>
<td></td>
</tr>
<tr>
<td>Gross regional product</td>
<td>-2.0%</td>
<td>-1.8%</td>
<td>-1.2%</td>
<td></td>
</tr>
<tr>
<td>Disposable income</td>
<td>-1.7%</td>
<td>-1.8%</td>
<td>-1.4%</td>
<td></td>
</tr>
<tr>
<td>State tax revenue</td>
<td>-1.0%</td>
<td>-0.1%</td>
<td>0.2%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Present values ("PV") are sums of annual impacts from 2020 to 2030 discounted to 2020 using a real annual discount rate of 7 percent.
(*) The PV for employment impacts is an undiscounted sum of person-years.
Source: NERA analysis as explained in text
Introduction

- Background on Proposed Ozone Standard
- Background on EPA Regulatory Impact Analysis
- Study objectives
- Study approach

Introduction: Background on Proposed Ozone Standard

- In January 2010, the US Environmental Protection Agency (EPA) proposed to reconsider the primary (8-hour) ozone National Ambient Air Quality Standard (NAAQS).
 - The current primary ozone standard is 75 ppb, set in March 2008.*
 - EPA proposed to tighten the primary ozone standard to between 60 and 70 ppb.
 - EPA invited comments on the proposal.
- A tightening of the primary ozone standard would increase the number of counties in the US that would be designated as "nonattainment" counties.
 - Some areas of the US that are in attainment of the current standard would be "nonattainment" areas under a tightened standard.
 - Current "nonattainment" areas could be in a more severe nonattainment category under a tightened standard.
- New and continuing nonattainment areas would need to achieve additional ozone precursor (i.e., NOx and VOC) emission reductions (relative to baseline emissions) to meet a tightened standard.
 - Nitrogen oxides (NOx) and volatile organic compounds (VOC) are ozone precursor emissions—i.e., emissions that lead to ground-level ozone formation in the presence of sunlight.
- Complications with Prevention of Significant Deterioration (PSD) and New Source Review (NSR) pre-construction permits could lead to project delays and/or deferrals.
- Nonattainment status under a tightened standard may be tied to restrictions on federal funding or business growth in nonattainment areas.

* For an area to attain the standard, the 3-year average of the fourth-highest daily maximum 8-hour average ozone concentration measured at each monitor within the area (the area's ozone level) must not exceed the target ozone level.
Introduction: Background on EPA Regulatory Impact Analysis

- EPA published an Updated Regulatory Impact Analysis (RIA) in conjunction with the proposed revisions to the primary ozone standard.
- The EPA Updated RIA, the EPA Final RIA from the 2008 ozone revision, and the EPA ozone rulemaking docket provide the following information relevant to this study:
 - Projected (2020) baseline ozone levels for US counties;
 - Descriptions of the assumed future implementation of various federal and state programs that form the bases for the baseline ozone level projections;
 - A sample ozone precursor emission “control scenario” that takes effect in 2020 across the US and achieves ozone level reductions through a set of NOx and VOC emission controls.
- EPA estimated attainment costs at a national level for a potential 60 ppb ozone standard.
 - EPA modeled the “known” controls (i.e., those that were in its database or otherwise specified) by area.
- The EPA RIAs do not provide economic impacts estimates for a potential ozone standard within the range of 60 to 70 ppb.

Introduction: Study Objectives

- The objective of this study is to provide estimates of attainment costs and economic impacts in New Hampshire of a potential 60 ppb ozone standard.
 - We model an attainment deadline of 2020 (as assumed by EPA).
 - We model attainment costs and economic impacts relative to projected baseline conditions that would achieve an ozone standard of 84 ppb (the baseline conditions assumed by EPA).
 - We include the potential gains to some businesses from attainment costs (e.g., increased demand for low-emission technologies).
- We do not model the following:
 - Economic effects associated with potential restrictions on federal funding or business growth in New Hampshire due to non-attainment status;
 - Project delays and/or deferrals resulting from complications with PSD/NSR pre-construction permits; and
 - Economic impacts on small businesses (since REMI does not develop information by size of business).
Introduction: Study Approach

- We use EPA estimates of NOx and VOC emission reductions necessary to achieve a potential 60 ppb ozone standard in New Hampshire.
- We use EPA estimates of emission reductions and costs from known controls.
- We develop a “marginal cost curve” for emission reductions in New Hampshire—i.e., a dataset identifying the various control measures that could contribute to achievement of the ozone targets, ordered in terms of cost per ton.
 - The marginal cost curve shows how the cost per ton increases as more expensive measures are implemented to achieve increasing levels of emission reduction.
- Using the marginal cost curve, we calculate attainment costs for the 60 ppb standard by selecting control options along the marginal cost curve from lowest to highest cost per ton until the target is met; this process ensures that the calculated attainment costs reflect the lowest cost to achieve the 60 ppb ozone standard.
- We use the attainment cost estimates as inputs into the Policy Insight regional economic model, a state-of-the-art model developed and maintained by Regional Economic Models, Inc. (REMI), to assess the potential economic impacts on New Hampshire.
 - The REMI model incorporates the direct economic effects of control costs and other regional expenditures as well as indirect and induced effects throughout the regional economy.
 - We present impacts on gross regional product, employment, disposable income, and state tax revenue.

Methodology

- Baseline Ozone Concentrations
- Estimating Reduction Requirements and Attainment Costs
- Estimating Economic Impacts
Methodology: Baseline Emissions

- Baseline emissions are the NOx and VOC emissions under expected future conditions with an ozone standard of 84 ppb (the baseline ozone standard assumed in the EPA 2008 and 2010 RIAs).
- The EPA RIAs provide projected baseline ozone levels for US counties in 2020 and describe the assumptions about future implementation of various federal and state programs that form the bases for the ozone level projections.
 - Baseline emissions in the EPA RIAs are intended to account for economic growth and reductions expected from all “on-the-books” local and federal regulations, including existing local commitments to meet the 84 ppb ozone standard and federal programs to reduce NOx or VOC emissions from various sources (e.g., the Clean Air Interstate Rule).
- We use the information in the EPA RIAs to project 2020 baseline NOx and VOC emissions in New Hampshire.

Methodology: Estimating Emission Reductions and Attainment Costs

- We use information on necessary emission reductions in New Hampshire from the EPA RIAs.
- We use the costs of EPA “known” controls from the EPA RIAs that reflect the control alternatives and their costs that EPA identified for 2020.
- NERA and Sierra develop a marginal abatement cost curve to show the costs of attaining a 60 ppb ozone standard in the least-cost manner.
- NERA and Sierra identify the following additional controls that potentially could be used in New Hampshire and elsewhere in the US to reduce emissions beyond EPA known controls.
 - Electric generating units: Retirement of existing coal units and replacement with natural gas combined cycle units.
 - Onroad mobile: Retirement (scrapping) of pre-2015 model year vehicles and replacement with more fuel-efficient vehicles.
 - Commercial marine: Retrofit of local commercial marine vessels with selective catalytic reduction (SCR) technology.
 - Area sources: Replacement of existing natural gas space heaters with more fuel-efficient natural gas units.
- The appendix to this report lists the types of “known” controls reported by EPA and the additional controls identified by NERA/Sierra.
- The costs of “extra” NOx reductions (if necessary) are assumed to increase beyond the most expensive “identified” controls at the same rate assumed by EPA for “unknown” controls.
Methodology: Overview of Economic Impacts Modeling

- We use the control cost estimates for a potential 60 ppb ozone standard as inputs into the Policy Insight regional economic model, a state-of-the-art model developed and maintained by Regional Economic Models, Inc. (REMI).
 - The REMI model is used by numerous local, state and federal governments to evaluate the economic impacts of projects and policies.
- Attainment of a potential 60 ppb ozone standard would require implementation of control measures that would impose direct costs in New Hampshire.
 - New Hampshire industries would incur increased production costs associated with the installation or use of emission control technologies and strategies.
 - New Hampshire taxpayers would incur increased taxes associated with increased local government expenditures on emission control programs.
 - The cost of living in New Hampshire would rise due to regulations on consumer products.
 - Note, however, that some businesses would gain from the additional demand for control measures (e.g., low-emission technologies).
- The REMI model captures the direct impacts in New Hampshire associated with attainment of the potential ozone standard in 2020, as well as the secondary indirect and multiplier effects that result as the direct effects work their way through the state economy.
- We estimate changes in costs for businesses and households and assign these changes in costs to the appropriate industry and household categories in REMI.

Methodology: Projected Baseline Economic Conditions

- The REMI model includes baseline projections for various economic variables and outputs (e.g., industry sector relative production costs, consumer product prices, gross regional product, employment by industry sector and occupation, and income, among others).
 - Baseline values in REMI are tailored to individually modeled regions and incorporate projected economic growth.
- We present the economic impacts of attainment of the potential 60 ppb ozone standard as differences from projected baseline economic conditions.
 - Inputs enter the REMI model as modifications to the baseline values of relevant economic variables.
 - The REMI model produces estimates of the effects of inputs as impacts on other economic variables and outputs relative to the baseline.
Results

- Baseline ozone concentration
- Marginal abatement cost curve
- Total attainment costs
- Economic impacts

Results: Baseline 2020 Ozone Concentrations in New Hampshire

- As shown in the map below, nine counties in New Hampshire currently have ozone monitors, and EPA projects that three of these counties would exceed 60 ppb in 2020 under baseline conditions.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Counties</th>
</tr>
</thead>
<tbody>
<tr>
<td>>60 ppb</td>
<td>3</td>
</tr>
<tr>
<td>60 ppb</td>
<td>6</td>
</tr>
<tr>
<td>No Data</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: EPA, Final Ozone NAAQS RIA (2008), Table 3a.18
Results: EPA 2020 Emission Reductions

- To meet a 60 ppb standard, EPA projects NOx emissions in New Hampshire in 2020 must be 31,000 tons, a reduction of 2,400 tons (7 percent) from the 2020 baseline. NERA relied on this estimate of required reduction for its own analysis.
- EPA estimates that all “known” controls would reduce New Hampshire NOx emissions by 2,400 tons (100 percent of the necessary reduction from the 2020 baseline).

Results: Marginal Abatement Cost Curve for New Hampshire

- The figure at right shows the cost per ton of increasingly expensive EPA controls in New Hampshire.
 - EPA’s cost estimate for the most expensive “known” control is $18,000 per ton.
- The estimated attainment cost for New Hampshire is $8.0 million annually beginning in 2020.
 - The estimated present value of costs from 2020 to 2030 is $68.0 million (as of 2020 using a real annual discount rate of 7 percent).
Results: New Hampshire Economic Impacts

- The table below summarizes the estimated economic impacts in New Hampshire of a 60 ppb ozone standard in 2020, 2025 and 2030 relative to baseline projections.

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Units</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>Million Jobs</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Gross regional product</td>
<td>Billion 2010$</td>
<td>$84</td>
<td>$96</td>
<td>$112</td>
</tr>
<tr>
<td>Disposable income</td>
<td>Billion 2010$</td>
<td>$72</td>
<td>$83</td>
<td>$96</td>
</tr>
<tr>
<td>State tax revenue</td>
<td>Billion 2010$</td>
<td>$10</td>
<td>$11</td>
<td>$12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change</th>
<th>Units</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>Jobs</td>
<td>-19,000</td>
<td>-18,000</td>
<td>-14,000</td>
<td>-$13.6</td>
</tr>
<tr>
<td>Gross regional product</td>
<td>Billion 2010$</td>
<td>-$1.7</td>
<td>-$1.7</td>
<td>-$1.5</td>
<td>-$13.6</td>
</tr>
<tr>
<td>Disposable income</td>
<td>Billion 2010$</td>
<td>-$1.2</td>
<td>-$1.5</td>
<td>-$1.4</td>
<td>-$11.4</td>
</tr>
<tr>
<td>State tax revenue</td>
<td>Billion 2010$</td>
<td>-$0.1</td>
<td>$0.0</td>
<td>$0.0</td>
<td>-$0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Change</th>
<th>Units</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>%</td>
<td>-2.4%</td>
<td>-2.1%</td>
<td>-1.6%</td>
</tr>
<tr>
<td>Gross regional product</td>
<td>%</td>
<td>-2.0%</td>
<td>-1.8%</td>
<td>-1.3%</td>
</tr>
<tr>
<td>Disposable income</td>
<td>%</td>
<td>-1.7%</td>
<td>-1.8%</td>
<td>-1.5%</td>
</tr>
<tr>
<td>State tax revenue</td>
<td>%</td>
<td>-1.0%</td>
<td>-0.1%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Note: Present values ("PV") are sums of annual impacts from 2020 to 2030 discounted to 2020 using a real annual discount rate of 7 percent. (*) The PV for employment impacts is an undiscounted sum of person years.

Source: NERA analysis as explained in text

Results: New Hampshire Employment Impacts by Year

- New Hampshire employment in 2020 is projected to decrease by 19,000 jobs (2.4 percent relative to baseline).

Note: The change in jobs shown for a given year is the total difference in jobs relative to the baseline in the given year.

Source: NERA analysis as explained in text
The figure below shows estimated changes in New Hampshire employment by sector in 2020, 2025, and 2030 due to a potential 60 ppb ozone standard. The estimated positive impacts for manufacturing reflect potential production in New Hampshire of low-emission technologies.

New Hampshire gross regional product in 2020 is projected to decrease by $1.7 billion (2.0 percent relative to baseline).
Estimated Economic Impacts on New Hampshire of EPA 2010 Ozone Proposal

Results: New Hampshire Value Added Impacts by Sector

- The figure below shows estimated changes in New Hampshire value added by sector in 2020, 2025, and 2030 due to a potential 60 ppb ozone standard. The estimated positive impacts for manufacturing reflect potential production in New Hampshire of low-emission technologies.

NH Value Added Impacts by Sector

Note: Industry value added is the value of output from a particular industry less the value of intermediate goods; the sum of value added from all sources in a region is the gross regional product of the region (i.e., the value of goods and services produced in the regional economy).
Source: NERA analysis as explained in text

Results: New Hampshire Disposable Income Impacts by Year

- New Hampshire disposable income in 2020 is projected to decrease by $1.2 billion (1.7 percent relative to baseline).
References

Appendix: Lists of Control Measures

- Electric Generating Units
- Non-EGU Point
- Area
- Onroad Mobile
- Nonroad Mobile
Lists of Control Measures: Electric Generating Units

<table>
<thead>
<tr>
<th>EPA “Known” Controls</th>
<th>NERA/Sierra “Identified” Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lower ozone season nested caps in OTC and MWRPO states while retaining the current CAIR cap and a new cap for Eastern Texas.</td>
<td>• Replace coal-fired plants with combined-cycle natural gas turbines</td>
</tr>
<tr>
<td>• Application of local controls (SCR and SNCR) nationally to coal fired units in and around NA counties covering the combination of CBSA (Core based Statistical Areas) and CSA (Combined Statistical Areas) outside of OTC, MWRPO, and East Texas.</td>
<td></td>
</tr>
</tbody>
</table>

Lists of Control Measures: Non-EGU Point

<table>
<thead>
<tr>
<th>EPA “Known” Controls</th>
<th>NERA/Sierra “Identified” Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Biosolid Injection Technology</td>
<td>• None</td>
</tr>
<tr>
<td>• LNB (Low NOx Burner)</td>
<td></td>
</tr>
<tr>
<td>• LNB + FGR (Flu Gas Recirculation)</td>
<td></td>
</tr>
<tr>
<td>• LNB + SCR (Selective Catalytic Reduction)</td>
<td></td>
</tr>
<tr>
<td>• NSCR (Non-selective Catalytic Reduction)</td>
<td></td>
</tr>
<tr>
<td>• OXY-Firing</td>
<td></td>
</tr>
<tr>
<td>• SCR</td>
<td></td>
</tr>
<tr>
<td>• SCR + Steam Injection</td>
<td></td>
</tr>
<tr>
<td>• SCR + Water Injection</td>
<td></td>
</tr>
<tr>
<td>• SNCR (Selective Non-catalytic Reduction)</td>
<td></td>
</tr>
<tr>
<td>• SNCR—Urea</td>
<td></td>
</tr>
<tr>
<td>• SNCR—Urea Based</td>
<td></td>
</tr>
<tr>
<td>• Permanent Total Enclosure (PTE)</td>
<td></td>
</tr>
<tr>
<td>• Work Practices, Use of Low VOC Coatings (Non-EGU Point Sources)</td>
<td></td>
</tr>
</tbody>
</table>
Lists of Control Measures: Area

<table>
<thead>
<tr>
<th>EPA “Known” Controls</th>
<th>NERA/Sierra “Identified” Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RACT to 25 tpy (LNB)</td>
<td>• Replace natural gas space heaters in residential buildings with more</td>
</tr>
<tr>
<td>• Switch to Low Sulfur Fuel</td>
<td>energy-efficient natural gas appliances</td>
</tr>
<tr>
<td>• Water Heater + LNB Space Heaters</td>
<td>• Replace natural gas space heaters in commercial buildings with more</td>
</tr>
<tr>
<td>• CARB Long-Term Limits</td>
<td>energy-efficient natural gas appliances</td>
</tr>
<tr>
<td>• Catalytic Oxidizer</td>
<td>• Equipment and Maintenance</td>
</tr>
<tr>
<td>• Equipment and Maintenance</td>
<td>• Gas Collection (SCAQMD/BAQMD)</td>
</tr>
<tr>
<td>• Incineration >100,000 lbs bread</td>
<td>• Low Pressure/Vacuum Relief Valve</td>
</tr>
<tr>
<td>• Low Pressure/Vacuum Relief Valve</td>
<td>• OTC Mobile Equipment Repair and Refinishing Rule</td>
</tr>
<tr>
<td>• OTC Solvent Cleaning Rule</td>
<td>• OTC Solvent Cleaning Rule</td>
</tr>
<tr>
<td>• SCAQMD—Low VOC</td>
<td>• SCAQMD Limits</td>
</tr>
<tr>
<td>• SCAQMD Rule 1168</td>
<td>• Work Practices, Use of Low VOC Coatings</td>
</tr>
</tbody>
</table>
| • Replace natural gas space heaters in residential buildings with more energy-efficient natural gas appliances
| • Switch to Emulsified Asphalts | • Switch to Emulsified Asphalts |

Lists of Control Measures: Onroad Mobile

<table>
<thead>
<tr>
<th>EPA “Known” Controls</th>
<th>NERA/Sierra “Identified” Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diesel Retrofits</td>
<td>• Replace pre-2015 model year light-duty gasoline vehicles (passenger cars and light trucks) with more energy-efficient vehicles</td>
</tr>
<tr>
<td>• Reduce Gasoline Reid Vapor Pressure (RVP) to 7.0</td>
<td>• Continuous Inspection and Maintenance</td>
</tr>
<tr>
<td>• Elimination of Long Duration Idling</td>
<td>• Continuous Inspection and Maintenance (OBD)</td>
</tr>
<tr>
<td>• Continuous Inspection and Maintenance</td>
<td>• Increased Penetration of Onroad SCR and DPF from 25% to 75%</td>
</tr>
<tr>
<td>• Commuter Programs</td>
<td>• Additional Technology Changes in the Onroad Transportation Sector</td>
</tr>
<tr>
<td>• Additional Technology Changes in the Onroad Transportation Sector</td>
<td>• Reduced Penetration of Onroad SCR and DPF from 25% to 75%</td>
</tr>
<tr>
<td>• Increased Penetration of Onroad SCR and DPF from 25% to 75%</td>
<td>• Continuous Inspection and Maintenance (OBD)</td>
</tr>
</tbody>
</table>
Lists of Control Measures: Nonroad Mobile

EPA “Known” Controls
- Diesel Retrofits and Engine Rebuilds
- Reduce Gasoline Reid Vapor Pressure (RVP) to 7.0
- Aircraft NOx International Standard
- Increased Penetration of Nonroad SCR and DPF from 25% to 75%

NERA/Sierra “Identified” Controls
- Install SCR on Category 1 and 2 engines for local commercial marine vessels (distillate-powered tugs, dredgers, commercial excursion, ferries, fishing, and other non-governmental support vessels)

For more information, contact:
David Harrison, Jr., Ph.D.
Senior Vice President
NERA Economic Consulting
200 Clarendon Street, 11th Floor
Boston, Massachusetts 02116
Tel: (617) 927-4512
Fax: (617) 927-4501

David.Harrison@NERA.com
www.nera.com